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Methods to calculate resonances energies, decay widths, and corresponding wave func-
tions, are discussed in realistic problems. Proton radioactivity from deformed drip-line
nuclei described as decay of a resonant state of the proton in the field of the daughter
nucleus, is used to test the models and to show that all experimental data currently
available can be consistently described.
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1. INTRODUCTION

Resonances are one of the most interesting phenomena in many fields of
physics which lead to important findings. In the quantum world, systems with
electrons, hadrons, or atoms provide enormous amount of data on resonances,
leading to the discovery of new states of matter. In nuclear physics, the recent
findings on proton radioactive nuclei (Woods and Davis, 1997), added to the list
many new examples, which are important not only as direct data on resonances, but
also for the production in the laboratory of new isotopes, in regions of the nuclear
chart which were “terra incognita,” until recently. In fact, the latest research activity
in nuclear radioactivity, aims to produce exotic nuclei with proton or neutron excess
and reach the limits of stability of matter, known as drip-lines, beyond which a
nucleon is no more bound, but can stay as a resonance. We are still far in research
capability to reach the neutron drip-line, since it is still impossible to produce in
the lab the heavy elements that by fragmentation could reach the limit of neutron
excess, but the same is not true for protons. The recent studies (Woods and Davis,
1997) of proton radioactivity from spherical and deformed nuclei, have almost
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completely defined the proton drip-line for 50< Z < 82. What is really observed is
the emission of a proton out of a nucleus just in the vicinity of the drip-line, beyond
it, where the proton forms a resonant state in the field of the daughter nucleus. In
order to escape it has to tunnel through the Coulomb and centrifugal barriers which
are quite long, of the order of 10–20 times the nuclear radius, therefore the decay
widths of these resonances are very narrow of the order of 10−16–10−22 MeV. The
escape energy of the emitted proton is also very small, around 1 MeV, therefore
these resonances lie very low in the continuum, and correspond essentially to
single particle excitations. Most part of the proton emitters are spherical, but there
are also examples showing quite large deformations, therefore, the single particle
states have to be known in a field with a specific shape.

The observables that are measured experimentally are the energy of the emit-
ted proton and the half-life for decay of the resonance. Through the reaction mech-
anisms for their emission, it is possible to learn about the structure of the elements
that form these resonances. Therefore, in order to sort out the nuclear structure
properties of these decaying nuclei from kinematics, very precise calculations of
these resonances have to be performed to be able to reproduce the experimental
data.

The study of realistic problems as discussed above, requires adequate interac-
tions, and always leads to the solution of complicated coupled channel equations.
It is the aim of this work, to discuss how to calculate the wave functions and the
half-lives of resonances in such cases. Realistic examples are provided by proton
drip-line nuclei, and it is shown how it is possible with our formalism, to interpret
perfectly the existing data on these exotic nuclei.

2. RESONANCES IN COUPLED CHANNEL PROBLEMS

In proton radioactive nuclei with an odd numberZ of protons, and even
numberN of neutrons, the emitted odd nucleon can be considered moving in
a single particle level, which corresponds to a resonance of the unbound core-
proton system. Therefore, the problem can be described by the radial Schr¨odinger
equation for the mean field felt by the nucleons moving in the nucleus, whose
solution corresponds to the single particle state. The equation should then be solved
(Ferreiraet al., 1997) imposing regularity at the origin and outgoing wave boundary
conditions at large distance for each partial wave, as required for resonances,
i.e.,

lim
r→∞ Rljm(r ) = Nljm(Gl (kr )+ iFl (kr )), (1)

to find the resonance states. The functionsF andG are the regular and irregular
Coulomb functions,k =

√
2µE/h2 the wave number, andNljm a normalization

constant.
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In general, the nuclear surface is not spherical, since rotational spectra has
been observed in many nuclei. Deformation is usually described by parameterizing
the nuclear radius in terms of a multipole expansion on spherical harmonicsYλ,µ,
depending on a set of deformation parametersβ̂ that represent variations in relation
to a standard spherical shape. The spherical case is automatically taken into account
by settingβ = 0. The quadrupole axially symmetric deformation is given by the
term with λ = 2, µ = 0, and is in general the most important contribution to
deformation. The corresponding parameterβ2 ≡ β can be positive or negative
according to a prolate or oblate form of the nucleus.

The nucleus is then viewed as a system of independent particles moving in a
deformed mean field. It is still an open problem to derive the nuclear mean field from
a microscopic approach, starting from the bare interaction between the nucleons.
Pure phenomenological shapes have to be adopted, that include a central part, spin–
orbit term, and the Coulomb interaction for the deformed charge distribution. The
central term is represented by a deformed Woods–Saxon potential, of the form,

V(Er , β̂) = V0

1+ exp[dist∑(Er , β̂)/a]
, (2)

wheredist∑(Er , β̂) is the distance between the pointEr and the nuclear surface,a
the diffuseness parameters, andV0 the strength. The deformed spin orbit potential
is assumed to be,

Vls = λ
(

h

2Mc

)2
{
1

V0

1+ exp[dist∑(Er , β̂)/als]

}
· (Eσ × Ep), (3)

with λ the strength of the spin–orbit interaction, andM andσ are the mass and
spin of the nucleon, respectively.

The previous expressions to describe the interaction, depend on strength, ra-
dius, and diffuseness parameters that are adjusted to reproduce single particle prop-
erties of deformed nuclei. Due to inherent potential ambiguities and fits to different
compilations of data, there are various sets of parameters that differ somewhat
amongst each other. It is well known that predictions from this type of interactions
are most sensitive to the surface region, and it is possible to find several combina-
tions of strength and geometry parameters that give the same results. The earliest
parameterizations date from the 60s and fit stripping and pickup data on spherical
nuclei for the sp energies, mainly on208Pb, and lighter nuclei. Since then, the range
of experimental data has been enlarged considerably, and other observables, like
ground state spins and parities, on spherical and deformed odd-mass nuclei, and
ground state equailibrium deformations were simulataneously taken into account.
For example, the “universal parameters” (Cwioket al., 1987), are valid throughout
the periodic table including extensions to exotic nuclei, and describe quite well
single particle level sequences and nuclear equilibrium deformations. From the
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work done in this field, it is possible to confirm that the deformed Woods–Saxon is
quite adequate to describe nuclear properties, but small changes in the parameters
of the spin–orbit interaction play a decisive role in getting the correct order and
distance between the levels. For details see Ferreiraet al. (2002).

Assuming that the system has axial symmetry, the wave function9(Er ), that
satisfies the time independent Schr¨odinger equation, can be expanded in spherical
waves, i.e.

9m(Er ) =
∑

l j

Rljm(r )[Yl (ω)χ ] jm (4)

sincem is a conserved quantity,Rljm are the radial functions,χ the spin function,
and the square parenthesis indicate the coupling of angular momentum and spin
to a final statejm. Projecting the Schr¨odinger equation on the angular and spin
part [Yl ′ (ω)χ ] j ′m one obtains a set of coupled channel radial differential equations
which has the form,(

d2

dr2
+ k2− l (l + 1)

r 2

)
Rl jm(r ) = 2m

h2

∑
l ′ j ′

(
Vm

1l j l ′ j ′ + Vm
2l j l ′ j ′

d

dr

)
Rl ′ j ′m(r ) (5)

where the quantitiesVm
1αα′ and Vm

2αα′ are the matrix elements of the interaction
taken between the angular and spin parts of the partial waves, depending onr ,
andα designates the set of quantum numberslj . The first derivative of the wave
function is coming from the deformed spin–orbit potential.

The solution of these coupled channel equations for such interactions, is com-
plicated. The deformed spin–orbit part of the potential, represented by a first order
derivative term, brings extra difficulties to the numerical solution of the equation,
and some mathematical transformations are needed as discussed in Ferreiraet al.
(1997) to have stable and very precise solutions needed for comparison with the
experimental data. However it is possible to get solutions with great accuracy, and
determine the resonance energies and wave functions for each deformationβ.

2.1. Exact Calculations

In general, a set ofN coupled differential equations of second order like
Eqs. (5) can be cast in the form,

HR = ER (6)

whereR is a vector. They can be solved in principle, integrating withN linearly
independent initial conditions for the function and its derivatives, and construct
with the solutions, a matrix̄R of N column vectors such that the true wave function
can be expressed as a linear combination of them, propagated from the origin and
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from large distances up to a matching radiusrm. This can be expressed as,

R(r ) = R̄(r )+c+r ≤ rm

R(r ) = R̄(r )−c−r ≤ rm (7)

where the± sign designates that the wave function matrices were propagated
from short and long range, andc± arer -independent column vectors to be found.
Imposing continuity of the wave function and derivative at the matching pointrm,
one gets,

R̄(rm)+c+ = R̄(rm)−c−

[R̄(rm)+]′c+ = [R̄(rm)−]′c−. (8)

These equations are equivalent to a 2N × 2N system of homogeneous and linear
equations with nontrivial solution only if the determinant of the matrix is zero.
Propagation of the wave function in the classically forbidden region is numerically
unstable. In this region, the exponentially growing solutions in locally closed
channels of large 1 dominate the matrix, and destroy the linear independence
leading to a loss of accuracy. If instead, the equations are written in terms of
the log derivative of the wave function, the propagation of the wave functions is
numerically stable. Therefore, we have considered the matrix

8m(r ) =
[

d

dr
R̄m(r )

]
× R̄−1

m (r ), (9)

and written Eq. (5) as,

d

dr
8m
αα′ (r )−

∑
α′′

Vm
2αα′′8

m
α′′α′ (r )+

∑
α′′
8m

2αα′′ (r )8m
α′′α′ (r )

+
[
k2− lα(lα+1)

r 2

]
δα,α′ − Vm

1αα′ = 0. (10)

The Schr¨odinger equation is thus transformed in a nonlinear matrix differen-
tial equation of first order withN × N equations which have to be integrated only
once. The multichannel matching conditions are expressed in terms of8m,

8m(rm)+R(rm) = 8m(rm)−R(rm) (11)

which has a non trivial solution only if the determinant‖8m(rm)+ −8m(rm)−‖
of the matrix is zero. IfE is an eigenvalue, a vector stateR must exist fulfilling
this condition. Therefore, finding the eigenvalue corresponds to finding the zero
of the determinant and the method is very stable. Equations (11) form in principle
an infinite set which has to be truncated in practical applications. The choice
of the number of terms to keep, which is equivalent to select a limiting angular
momentum, is determined by the accuracy required.
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Following this procedure, the energy solutions of the Schr¨odinger equation
were determined. For real, negative energies one gets normalized wave functions,
with the proper exponentially decreasing tail, in correspondence to the energy
eigenvalues of the bound system. For resonances, on the other hand, one gets purely
outgoing states with complex eigenvaluesER− i0/2 which have automatically
an imaginary part, related to the decay width of the resonance they describe. The
normalization of these unbound wave functions is given by the standard Zel’dovich
(Zel’davich, 1961) regularization. Deformation appears as a parameter, therefore
the equations have to be solved for each value ofβ.

It is very interesting to study the behavior of these resonances in the complex
plane, as a function ofβ. This is shown in Fig. 1 for113Cs. At zero deformation the
nucleus is spherical and the states are specified by the usual shell model quantum
numbers [lj ] and parityπ . Switching onβ, the total angular momentum is not
any more a conserved quantity, but its projection “m” on thez-axis is a conserved

Fig. 1. Real part of the energy as a function of the defor-
mationβ of all deformed neutron states coming from the
spherical levelj 15/2− in 113Cs. The corresponding “m”
values are given. For states that lie in the continuum two
lines are drawn, and the distance between them (shadowed
area) correspond to half of the resonance width.



P1: GCR

International Journal of Theoretical Physics [ijtp] pp994-ijtp-473591 November 12, 2003 0:22 Style file version May 30th, 2002

Resonances: Calculations and Observables 2123

quantity. Varyingβ, the states split into their “m” components, and it is possible
to study their energy dependence with deformation.

There are drastic changes of the position in the plane, according to the value
of the deformation. Resonances can attract or repel each other, or even become
bound states. This has very interesting consequences in a real system. In a specific
nuclear isotope, a certain deformation can still bind a nucleon, unbound for other
value ofβ, or make a resonance very narrow, which is an experimentally observable
quantity. Exotic nuclei are certainly candidates for this phenomena, therefore these
studies can have an important predicting power.

2.2. Analytic Continuation in the Coupling Constant

Resonance energies and wave functions can also be obtained by means of
Analytic Continuation in the Coupling Constant to weaker binding. The method,
proposed long ago by Kukulin and co-workers (Kukulinet al., 1979; Kukulin
and Krasnopol’sky, 1977) is based on the fact that for an attractive potentialV ,
with a strength parameter of the typeλV , a resonance state will become a bound
state as the coupling strength is increased. It is possible to prove (Kukulinet al.,
1979; Kukulin and Krasnopol’sky, 1977) that the wave numberk = √2µE/h is
an analytic function of the strengthλ and around the thresholdk (λ0) = 0, one has

k(λ) ∼ i
√
λ− λ0 (12)

for any l , taking into account the Coulomb interaction. These properties suggest
the analytic continuation ofk in the complexλ-plane from the bound-state region
into the resonance region through the employment of Pad´e approximants of the
second kind,

k ' k(N,M)(x) = i
c0+ c1x + c2x2+ · · · + cM xm

1+ d1x + d2x2+ · · · + dN xN
, (13)

wherex ≡ √λ− λ0. In practice, one solves the bound-state problem forλV in
correspondence toN + M + 1 different valuesλi of the coupling strength. Given
the threshold valueλ0, theN + M + 1 coefficients in the Pad´e approximants can
be determined by equatingk(N,M)(xi ) to the actual valueski of the wave number.
The approximants can then be used to estimate the resonance wave numberkr , and
hence the resonance position and width, in correspondence to the “physical value”
λ = 1 of the potential strength. A similar procedure (Cattapan and Maglione,
2000) can be used in the complexk-plane to analytically continue the bound-
state wave functionψ (B)

l (r ) into the scattering region for any value of the radial
variabler .

The method was applied to the proton emitter131Eu and is illustrated in
Fig. 2. The real part of the energy of them= 3/2+ state in shown as a function of
λ. The Pad´e extrapolation was obtained starting from the bound-state region, for
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Fig. 2. Energy eigenvalue and wave function for the proton 3/2+ state in131Eu. The dominat wave-
function componentsrψl j (r ) are evaluated atr = 15 fm. The full dots represent the results obtained
from the numerical solution of the Schr¨odinger equation, whereas crosses are the input values used
for the analytic continuation. Full curves are the outcome of the Pad´e extrapolation.

different decreasing values of the coupling strength. The relevant wave-function
components atr = 15 fm for decay from them= 3/2+ state, are given in the
right panel of Fig. 2.

A rather low-rank (3,3) Pad´e approximant can reproduce extremely well the
exact results, and the method can be confidently applied to these situations, where
high numerical accuracy is required in order to have a meaningful comparison
with the experimental data.

3. CALCULATION OF DECAY WIDTHS

There are different models to calculate decay widths for proton decay from
odd-Z evenN nuclei. This quantity, can be determined from the imaginary part
of the energy that solves the Schr¨odinger equation for resonances, but a great
numerical precision is needed for such small half-lives of few ms that correspond
to widths of≈ 10−20 MeV.

The half-lives can also be obtained by noticing that the partial decay width
is the overlap between the initial and final states (Humblet and Rosenfeld, 1961).
The wave function of the parent nucleus can be considered as the function of a
particle plus a rotor, identified with the daughter nucleus, in the strong coupling
limit (Bugrov et al., 1990; Bugrov and Kadmenskii, 1989). In this approach, the
partial decay width can be written as,

0
Jd
l p j p
= h2k

µ

(2Jd + 1) < Jd, 0, j p, Ki |Ki > 2

Ki + 1/2
|Nl p j pKi |2u2Ki , (14)
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where the total momentum of the initial and daughter nucleusKi andJd, are related
to the one of the escaping proton by the relationJd + Ki ≥ j p ≥ MMax(Ki , |Jd −
Ki |). The quantityu2

Ki
is the probability that the single particle level in the daughter

nucleus is empty, evaluated in the BCS approach. Aside from angular momentum
recoupling coefficients, the decay width of Eq. (8) is completely defined by the
asymptotic normalizationN. The most important contribution to the asymptotic
normalization comes from the real part of the wave function, which is determined
with great precision.

In most cases, decay occurs mainly to the ground state of the daughter nucleus,
soJd = 0, and the outgoing proton has the largest possible energy. Its momentum is
then equal to the total and initial momentum of the daughter nucleus,j p = Ji = Ki .
There is only one component of the wave function that contributes. In the case
of decay to excited states, few combinations are permitted forl p j p according to
angular momentum coupling rules, and consequently different components of the
parent wave function are then tested. It is possible that decays to different states
are allowed, and a total width0T should be defined as the sum of all partial widths
satisfying Eq. (14), and branching ratios as the ratio between partial and total
widths.

The decay width obtained from Eq. (14) depends on deformation, and is very
sensitive to the wave function of the decaying state. Therefore, if it is able to
reproduce the experimental value, will give clear information on the deformation
and properties of the decaying state.

As an example we have chosen131Eu, a well deformed proton emitter with
a predicted quadrupole deformationβ2 = 0.33 (Moller et al., 1995, 1997). Two
proton lines were observed (Sonzogniet al., 1999) in the decay of this element,
at 932(7) keV with half-lifeT1/2 = 17.8(19) ms corresponding to the ground
state proton decay, and at 811(7) keV withT1/2 = 2310

−6 ms. Since these two half-
lives are very similar, the second line was interpreted as decay to the excited
2+ state in130Sm with a branching ratio of 0.24± 0.05 and a total half-life of
T1/2 = 20.2(25) ms.

The single particle levels, bound states and resonances, were determined
from the exact solution of Eq. (5), and are shown in Fig. 3. The states close to
the Fermi level, are the decaying ones, since the parent nucleus is in the ground
state. For them the half-lives for decay were calculated making use of Eq. (14),
and are also presented in Fig. 3, in comparison with the experimental results.
The statesK = 5/2+a , K = 3/2−, andK = 3/2+, could describe the half-life for
decay. The first state, describes it withβ in the range of 0.15–0.28, whereas the
other two in the range of 0.2–0.24 and 0.24–0.34, respectively. Since experiment
provides extra information, the calculation of the branching ratio shown in Fig. 4,
permits to eliminate the statesK = 5/2+a andK = 3/2−, which predict a branching
ratio one order of magnitude smaller than the experimental value. Therefore, the
interpretation of the fine structure data, allows an unambiguous determination
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Fig. 3. a) Proton single particle Nilsson levels of131Eu. The dotted lines indicate
the Fermi level. b) Half-lives of the resonances of131Eu, as function of deformation
β, (full lines), for levels close to the Fermi energy. The shadowed area represents
the uncertainty due to the experimental error on the energy of the proton. The
experimental value, that lies between the dashed lines, is taken from Sonzogniet al.
(1999).

Fig. 4. Branching ratio for the decay to the 2+ state
of 130Sm as a function of deformation.



P1: GCR

International Journal of Theoretical Physics [ijtp] pp994-ijtp-473591 November 12, 2003 0:22 Style file version May 30th, 2002

Resonances: Calculations and Observables 2127

of the angular momentum,K = 3/2+ and deformationβ ≈ 0.27, of 131Eu, in
agreement with predictions of M¨oller et al. (1995, 1997).

The decay of the remaining measured odd–even deformed emitters,109I,
113Cs,141Ho,151Lu, and the just found117La (Soramelet al.,2001), and the isomeric
decays of141mHo, 151mLu, and117mLa, were also perfectly understood (Maglione
and Ferreira, in press) within this model.

Emission from deformed systems with an odd number of protons and neutrons
can be discussed in a similar fashion (Ferreira and Maglione, 2001). The decaying
nucleus is described by a wave function of two particles-plus-rotor in the strong
coupling limit represented in terms of the single particle functions of the odd
nucleons. However, in contrast with decay to ground state of odd–even nuclei
where the proton is forced to escape with a specific angular momentum, many
channels will be open due to the angular momentum coupling of the proton and
daughter nucleus,EJd + EJp, giving a total width for decay as a sum of partial widths
allowed by parity and momentum conservation,

0 Jd =
Jd+KT∑

j p=max(|Jd−KT |,K p)

0
jd
l p j p

(15)

where the width for decay in the channell p j p is given by,

0
jd
l p j p
= h2k

µ

(2Jd + 1)

(2KT + 1)
〈Jd, Kn, j p, K p|KT , KT 〉2

× |ul p j p(r )|2
|Gl p(kr )+ i Fl p(kr )|2 u2K p. (16)

The factoru2
K p

is the probability that in the daughter nucleus the proton single
particle level is empty, evaluated with the pairing interaction in the BCS approach.
The quantity in brackets represents a Clebasch–Gordan resulting from the angular
momentum coupling of the odd nucleons, andKT = |K p ± Kn| the spin of the
bandhead state of the decaying nucleus. Since the neutron intrinsic state does not
change during decayKd = Kn. The total decay width depends on the quantum
numbers of the unpaired neutron which cannot be considered only a spectator, but
contributes significantly with its angular momentum to the decay. The proton and
neutron single particle Nilsson levels in112Cs are depicted in Fig. 4 as a function
of deformation. The neutron.

Fermi level is at levels withKn = 1/2±, 3/2+, or 5/2+ according to the
deformation value, whereas for protons we tookK p = 3/2+ since it reproduces
the decay of113Cs (Maglioneet al., 1998). The corresponding half-lives evaluated
from Eqs. (15) and (16), are shown in Fig. 5. They are displayed separately in the
two possible coupling casesKT = K p ± Kn. Since in each coupling the neutron
single particle level leads to quite different factors and intermediate partial widths,
the half-lives that depend strongly on these quantities are quite different. The
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Fig. 5. a) Proton Nilsson levels in112Cs. The dotted lines denote the levels around the Fermi
surface. b) The same as in a) for neutrons.

experimental value is reproduced considering the odd neutron in states withKn =
3/2+, 5/2+, with corresponding deformationsβ > 0.1 with KT = 3+, andβ > 0.2
with KT = 4+, respectively. When the proton and neutron are antiparallel, the same
neutron states giveβ > 0.14 andβ > 0.24 forKT = 0+, 1+, respectively, whereas
the 1/2± states always have a very long lifetime. The stateKn = 5/2−, should be
excluded, since it is the Fermi level only at very low deformation, giving a quite
short half-life. Therefore, the only possibility is given byKn = 3/2+, which is the
Fermi level for 0.05 < β < 0.19, and reproduces the experimental half-life in this
range of deformations. These deformations are consistent with the ones obtained
for 113Cs (Maglioneet al., 1998), giving further support to this calculation.

All the other measured odd–odd deformed proton emitters,140Ho, 150Lu,
and the isomeric decay of150mLu, were analyzed in a similar way (Maglione
and Ferreira, in press), and it was also possible to interpret the data on half-
lives identifying completely the decaying state and assigning to the nucleus a
deformation compatible with other nuclear structure calculations (M¨oller et al.,
1995, 1997).

4. CONCLUSIONS

The resonance states and their corresponding half-lives for decay are eval-
uated for a deformed system described by realistic interactions. The eigenstates
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are calculated by solving the coupled channel Schr¨odinger equation for an ax-
ially deformed Woods–Saxon potential with outgoing boundary conditions. We
have shown how to obtain an exact solution of this complicated coupled channel
problem.

An alternative approach was also discussed, by varying the interaction cou-
pling strength so as to analytically continue a bound-state energy eigenvalue, and
wave function into the positive energy region, becoming a resonance. Very accurate
results were obtained with this approach.

The application of these methods to describe all available experimental data
on even–odd and odd–odd deformed proton emitters from the ground and isomeric
states, as well as the data on fine structure, was very successful. All observables
were accurately and consistently reproduced, identifying the level and deformation
of the decaying nucleus, and also supporting previous predictions made by other
models on their nuclear structure properties. We have thus shown a very interesting
application of the basic theory of resonances, that gave a valuable contribution to
the understanding of a class of events in contemporary nuclear physics.
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